Bell & Gossett

说明手册 P5002488

VSX 系列

VSH, VSC®, 和 VSCS®

离心水泵

安装、运行与维护

安装人员:请将本手册留交产品所有者使用。

目录

介绍		1
	描述 .	1
	泵的应	用1
	运行限	制1
		最大进压1
		最大工作压力
		运行限制
		机械密封件1
		填料
		·标识
		.
	—	全说明4
		电气安全4
	,	热安全4
	*	机械安全4
一般证		5
	本手册	的目的5
	保修 .	5
	接收水	泵时的注意事项5
		放5
		时5
		6
		重要事项
		置
	,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		可选的灌浆操作
		校直7
		使用直尺和卡尺进行校直8
		使用千分表进行校直9
		最后校直11
	吸入和	排出管道11
	į	吸入管道12
	Į	吸入管道的阀门13
	i	出水管道13
	J	压力计14
	7	水泵的隔离14
	水泵的	密封14
	7	机械密封件14
		填料
	V型切	割泵轮边缘15
运行		
		17
		17
	/1/0	备17
		·音···································
		查内容
	塊场測	试18
维护		19
	一般维	护和定期检查19
		19
		泵轴承19
	4	连轴哭 10

	关于密封	19
	机械密封件	19
	填料(无石棉)	19
	泵受水淹损坏后的维护	20
故障核	金修	21
保护装	艺艺	23
	ANSI/OSHA 连轴器保护装置的移除/安装	23
	移除	23
	安装	23
	支架保护装置	24
维修.		25
	一般拆卸程序	26
	关闭	
	移除轴承框架时的拆卸程序-适用于所有泵	
	移除标准机械密封件的拆卸程序	
	移除填料函和填料的拆卸程序。	28
	移除集装式密封件的拆卸程序	
	移除盖板和轮轴组装体的拆卸程序一适用于所有水泵	
	安装盖板和轮轴组装体的组装程序一适用于所有水泵	
	安装标准机械密封件的组装程序	31
	安装填料函和填料的组装程序	32
	安装集装式密封件的组装程序	
	安装轴承框架的组装程序一适用于所有水泵	
	一般组装说明	
	改变旋转方向	
	更换标准机械密封件	
	更换集装式密封件	
	更换填料或轴套	
	A. 一般拆卸说明	
	B. 移除填料函和填料的拆卸程序	
	C. 安装填料函和填料的组装程序	
	D. 安装轴承框架的组装程序一适用于所有水泵	
	定购部件	
	代理服务	36

注意:本书旨在提供关于所购买设备性能的相关信息,为操作人员提供帮助。

但同时,使用者有责任在安装、运行和维护此设备的过程中,采 用恰当的工艺方法。

如有其它问题, 敬请联系

BELL & GOSSETT (847) 966-3700

http://www.bellgossett.com

描述

Series VSX 离心泵为框架固定泵,工作高效、结构 牢固、设计紧凑,并采用了底脚固式涡壳、便于调整的联轴器、成套的密封件及立式双吸结构,因而 VSX 系列离心泵的安装、运行及维护简单易行。

泵的应用

标准 Series VSX 离心泵的衬青铜结构使其完美适用于以下液体:循环冷却或加热液体、锅炉给水、冷凝液、增压后的液体、一般泵吸液、未加热的家用新鲜水及良性液体等。

关于其它应用情况,敬请联系 Bell & Gossett 公司的当地办事处。

运行限制

未经 Bell & Gossett 特别说明, Series VSX 泵的运行限制如下:

最大进压

根据泵的大小和密封件的类型,泵的最大进压如表 1 所示:

表 1: 最大进压

	成套的密封件	平衡式密封件			
2"密封件尺寸 4x6x10.5 5x6x10.5 5x6x13.5 6x8x10.5 6x8x13.5 8x10x10.5	175 psi (12 Bar)	300 psi (20 Bar)			
2.5" 密封件尺 寸 8x10x13.5 10x12x10.5 10x12x13.5	175 psi (12 Bar)	300 psi (20 Bar)			
3 " 密封件尺寸 12x14x13.5 14x16x13.5	160 psi (12 Bar)	300 psi (20 Bar)			
3.5" 密封件尺 寸 12x14x17.5	125 psi (12 Bar)	300 psi (20 Bar)			

最大工作压力

见泵身的铭牌。

密封件运行限制

机械密封件

注意: 用于相对没有泥尘和/或其它磨粒的闭合或开放系统。

成套的 EPR/Car/SiC: 温度范围为-17.78°C 至 148.8°C; pH 值范围为 6.5 至 8.5

成套的 Viton/Car/SiC: 温度范围为-17.78°C 至 107.2°C; pH 值范围为 6.5 至 8.5

成套的 EPR/Graphite Loaded SiC: 温度范围为-17.78°C 至 148.8°C; pH 值范围为 7 至 12.5

平衡式 EPR/Graphite Loaded SiC: 温度范围为-17.78°C 至 148.8°C; pH 值范围为 7 至 12.5

平衡式 Viton/Graphite Loaded SiC: 温度范围为-17.78°C 至 107.2°C; pH 值范围为 7 至 12.5

A

注意: 谨防设备损坏

为防止造成密封件过早失效或任何伤害,不得将高进压 VSX 泵的平衡式密封件替换为成套的密封件。

否则,可能对设备造成严重损坏和/或对人员造成中度伤害。

填料

注意:用于需要大量补给水的开放或闭合系统,也用于化学条件复杂多样且累积生成固体物的系统。

编织石墨 PTFE:

温度范围为-17.78°C 至 93.3°C; pH 值范围为 7 至 9

水泵的标识

Bell & Gossett 公司生产的泵拥有指定的系列号,如 Series VSX、Model VSH、VSC 或 VSCS 等。 泵的铭牌上有标识和级别信息,如图 1 和图 2 所示。

序列号是记录水泵信息的永久编号,在相关订单及 订购备件时,必须提供该水泵的序列号。

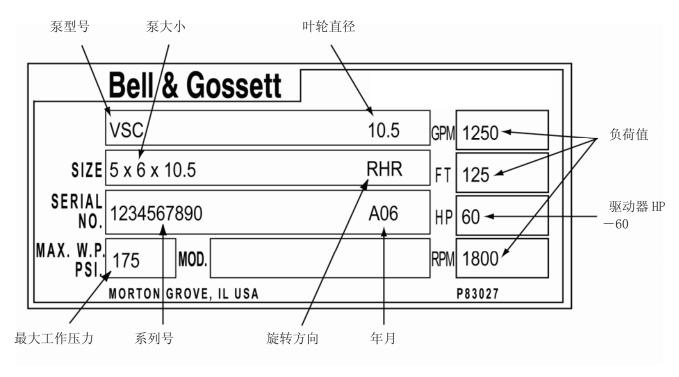


图 1: 标牌

图 2: 吸入限制

安全说明

安全说明

此安全警告标志出现在本手册和泵安全说明贴牌, 提示本说明与安全相关。

此安全警报标志的含义为:注意!安全相关!务请遵守!否则危险!

Series VSX 泵应有以下安全说明贴牌,位置如图所示。若贴牌不全或字迹不清,敬请联系 Bell & Gossett 公司的当地办事处,进行更换。

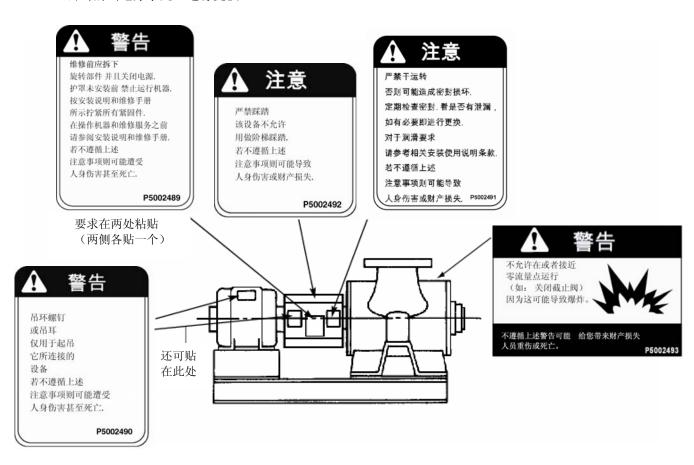


图 3:安全说明贴牌

其它安全说明

电气安全

▲ 警告: 谨防电击

电气连接须由专业电工完成, 必须遵守所有的适用 规则和条款,操作无误。

否则会造成严重的人员伤亡,或财产损失。

▲ 警告: 谨防电量过载

三相电机必须配备大小合适的加热器, 提供过载和 低压保护。单相电机内置过载保护装置。

否则会造成严重的人员伤亡,或财产损失。

热安全

▲ 警告: 谨防极端高温和低温

如果泵、电机或管道的工作温度过高或过低,则必 须加以保护或隔离。

否则会造成严重的人员伤亡,或财产损失。

机械安全

▲ 警告: 谨防意外启动

进行维护操作之前, 必须拔掉或关闭电源。

否则会造成严重的人员伤亡,或财产损失。

▲ 警告: 谨防旋转部件

运行泵之前,必须配备所有保护装置。

否则会造成严重的人员伤亡,或财产损失。

▲ 警告: 谨防系统压力过大

泵的最大工作压力如铭牌所示。切勿超过!

否则会造成严重的人员伤亡,或财产损失。

▲ 警告: 谨防压力过大 体积膨胀

水和其它液体受热后,体积膨胀。由此产生的压力 会导致系统部件失效和排出高温液体。为防止发生 此类情况, 需要安装有大小合适的压缩槽和减压阀

否则会造成严重的人员伤亡,或财产损失。

本手册的目的

本手册旨在提供安装、运行和维护该泵产品的几种 实用方法。请在进行安装、运行或维护之前,通读 手册,并就近保存,便于日后参考。

正确的操作是设备运转良好的保证。为使泵组的工 作效率达到最高,请遵守本手册推荐的安装和维护 操作程序。

保修

请联系当地办事处, 获取保修内容。

接收水泵时的注意事项

水泵运抵后,请立即检查是否有缺损。(绝对必 要!) 如有任何损坏,请立即告知运输公司,并在 运货单上注明,这样可以促使运输公司尽快采取措 施,满足客户要求。

通常情况下在工厂装运,将泵体和电机固定在一个 底盘上, 喷涂底漆和面漆。完成联轴器的组装, 或 移除连接部件,只将联轴器的毂固定在轮轴上。将 移除的连接部件另外装箱,与泵体一起运送,或将 其附在底盘。

运送设备时,轮轴经校直;但由于运输的原因,泵 组在运抵时校直度可能受到影响, 在安装过程中必 须将其校直正确。Bell & Gossett 公司认为,只有 采用经过认可的安装方法,才能保证合适、正确的 校直。(请参见基座、底盘设置和连轴器校直部 分。)

暂时存放

如果水泵运抵后,不随即进行安装和运行,请 将其存放在清洁、干燥, 且环境温度变化缓慢 的地方。定期旋转轮轴并给轮轴承涂润滑油, 以减少氧化和腐蚀,降低轴承产生假性柏林纳 痕(勃氏痕)的可能性。

升吊泵时

▲ 警告: 谨防坠物

如果部件带有吊环螺栓或吊耳,则其吊环螺栓或吊 耳只能用于升吊该部件。

否则会造成严重的人员伤亡,或财产损失。

如果需要升吊整个泵,则使用底座栏下面的吊索, 如图 4 所示。卸载和搬运泵组时,必须在底盘上设 置四个或更多的升吊点。

在工厂装运时,可能将电机固定在了基座上,也可 能没有。如果没有将电机固定在基座上,则在升吊 泵时,需要根据设备大小,调整负重的平衡。

有些泵体、基座和电机组装体不能作为一个完整的 组装体进行升吊, 否则是不安全的。可能对基盘造 成损坏。如果在工厂装运时,将电机固定在了底 盘,则升吊整个组装体是安全的。如果在工厂装运 时,未将电机固定,则不要升吊水泵、基座和电机 的组装体。而是,将电机暂置一旁,只升吊泵体和 基盘。之后再将电机固定在基座。

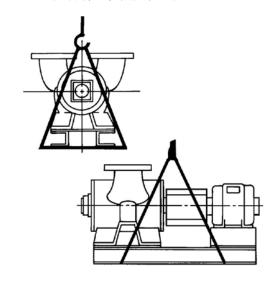


图 4: 升吊举例图

地点

水泵的安装地点应有充足的空间,以进行检查、维护和保养。如果需要使用起重机或起重滑车,则应留有充足的上部空间。如果将泵安装在室外,则建议在泵组的上方加遮护罩。

A

警告: 谨防坠物

如果部件带有吊环螺栓或吊耳,则其吊环螺栓或吊耳只能用于升吊该部件。

否则会造成严重的人员伤亡,或财产损失。

水泵的最佳安装地点是混凝土地面,泵下垫些许底 土,便于吸音和减震。如果泵高架安装,则应该采 取特殊措施,以减少可能的声音传播。请咨询声学 专家,获取帮助。

如果水泵没有安装在闭合系统中,安装地点则应尽可能靠近进液源头,并使得安装时,吸入管须用尽可能少的弯头和弯管。

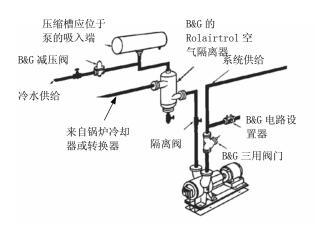


图 5: 水泵的安装地点

安装时,必须保证可用净有效吸水头(NPSHA)等于或大于所需净有效吸水头(NPSHR),如水泵的性能曲线所示。

在水泵开始运行前,必须做好运行准备。水泵的安装地点的高度应尽可能低于液体的高度,以有利于运行准备,并确保液体流动稳定。这种情况可为泵提供有效吸水头。也可以给吸入管加压,做好运行准备。

重要事项

如果闭合系统没有大小合适的安全装置和控制装置,则不要安装和运行 Bell & Gossett 的水泵、3D 冷门和吸入扩散管等。这些装置装置包括配备大小合适的减压阀门、压缩槽、压力控制器、温度控制器和流量控制器。如果系统中没有配备这些装置,则咨询负责的工程师或建筑师后,再安装运行水泵。

基座

混凝土基座或减震垫必须足以吸收震动(根据水力学会标准,基座的重量至少应是泵组重量的五倍。)。它必须为底盘提供永久而坚固的支持,且基座的建造应符合当地情况。这对于维护弹性组装的泵组的校直十分重要。不要将底座用作减震垫。

应在混凝土基座嵌埋大小合适的基座螺栓,方法有两种,见图 6 所示。表 2 是地脚螺栓孔和地脚螺栓的尺寸。待基座养护几天后,再继续安装泵。

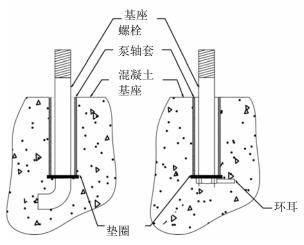


图 6: 基座

表 2: 地脚螺栓/孔尺寸

地脚螺栓孔直径		地脚螺栓直径
	1.125"	1.000"
	1.375"	1.250"

底盘设置

使用钢楔或垫片作支撑,将泵组安装在混凝土基 座。必须使用机械加工的钢楔或垫片,并置于每个 地脚螺栓的两侧,以保持底座平衡。钢楔或垫片的 宽度应等于或大于基座栏的宽度。钢楔或垫片的长 度应至少是地脚螺栓直径的四倍。可以在已有地脚 螺栓之间放置更多的垫片。

每个地脚螺栓孔放入一个地脚螺栓,每个地脚螺栓 处放置 W 型垫圈。

注意: 谨防设备损坏

每个地脚螺栓孔放入地脚螺栓, 并使用 W 型垫 圈。否则, 泵组可能会发生移位。

否则,可能对设备造成严重损坏和/或对人员造成中 度伤害。

水泵的底座必须置平,以避免对电机或水泵的运行 造成任何机械障碍。在工厂装运时,泵经校直(已 经安装了电机)。但是,由于水泵的底座是弹性可 变的,因而在运输过程中,它们可能会升降和扭 曲。在安装泵组的管件之前, 先校直各个部件。安 装完管件和泵,并将其用螺栓固定后,再次校直各 个部件。使用新的泵组和基座时,可能有必要不时 重新校盲各个部件。

可选的灌浆操作

将泵组置平,用螺栓稳妥地固定在地面,并且 各个部件校直正确,之后允许对底座进行灌浆 操作。在水泵的底座内部应该使用防缩的优质 水泥浆。

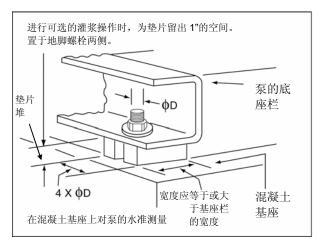


图 7: 设置底座盘

旋转

Series VSX 水泵系列可以向左旋转和向右旋转。泵 体内铸有一个箭头, 指示旋转的方向。

连轴器校直

校直各个部件时,只能移动或垫起电机。对一个方 向进行的调整可能会影响到另一个方向的校直。因 此,进行一项校正操作后,需要检查所有方向的校 直。只有在泵体和电机螺栓拧紧后,才能进行测 量。在泵组达到最终运行温度时,再进行最后的校 直检查。

▲ 警告: 谨防意外启动

进行维护操作之前,必须拔掉或关闭电源。

否则会造成严重的人员伤亡,或财产损失。

- 1. 检查水泵和电机轴,移除一切油漆、毛 刺、铁锈等。将连轴器的毂(还有轴衬, QD 或锥形锁型)用键慢慢滑到轮轴上。
- 2. 隔离连轴器采用高速环时,在部件的两侧 各安装一个环,不要箍紧。

- 3. 将毂上的一侧部件托起,确定合适的间 距。如果隔离部件采用高速环,则将轮毂 上的两侧部件均托起,确保轮毂与环互不 相扰。安装轮毂时,其延伸部分朝内、朝 外均可。确保轮轴进入轮毂的长度至少为 轮轴直径的.8 倍。
- 4. **轻轻地**将轮毂箍紧到轮轴上,防止它们在 校直的过程中移位。
- 5. 轮毂应至少与阀门校直,图 10 为允许的校 直误差。进行校直时,可使用激光、千分 表、或直尺和卡尺。

使用直尺和卡尺进行校直

可以用卡尺测量两个轮毂圆周上不同点之间的 距离,以检查角度校直误差。**不要旋转轮轴。** 重新调整设备位置,直到最小距离与最大距离 的差值达到允许值。

还可以在连轴器表面的不同点之间插入塞规, 检查角度校直误差。**不要旋转轮轴。**重新调整 设备位置,直到最小距离与最大距离的差值达 到允许值。

可以将直尺放到两个轮毂上,测量轮毂圆周上 不同点之间的偏移,从而检查平行校直。**不要** 旋转轮轴。重新调整设备位置,直到偏移达到 允许值。

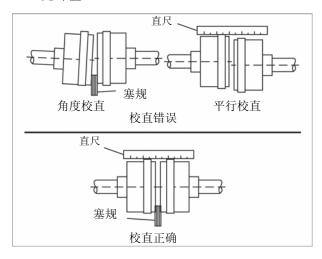


图 8: 使用直尺检查校直

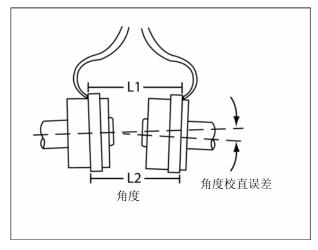
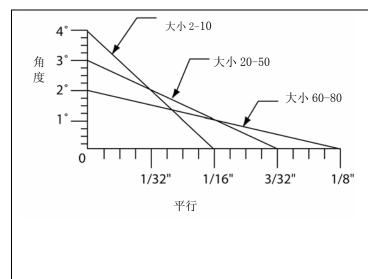



图 9: 使用卡尺检查校直

表**3**: 以(靠背轮)上下间距差(英寸)衡量的 角偏差

轮毂大小	度数						
1042701	1	2	3	4			
WE2	0.032	0.065	0.097	0.129			
WE3	0.040	0.081	0.121	0.162			
WE4	0.045	0.091	0.136	0.181			
WE5	0.055	0.109	0.164	0.218			
WE10	0.064	0.127	0.191	0.218			
WE20	0.078	0.156	0.234				
WE30	0.095	0.189	0.284				
WE40	0.116	0.231	0.347				
WE50	0.142	0.284	0.425				
WE60	0.153	0.305					
WE70	0.161	0.323					
WE80	0.196	0.393					

图 10: Wood's Duraflex®1连轴器的最大允许校直误差

例如:轮毂大小为 WE10 的连轴器,在角度校直误差为 3°时,L1 和 L2 的差值为.191"(见图 9)。

使用千分表进行校直

使用千分表检查角度校直误差时,将千分表的 表座固定到轮轴或连轴器之一侧,将千分表按 钮置于连轴器另一侧的前表面或后表面。在连 轴器两侧划指标线,如图 11 所示。将千分表 置零。同时旋转连轴器两侧,确保指标线匹 配。重新调整设备位置,直到偏移达到允许 值。

使用千分表检查平行校直时,将千分表的表座 固定到轮轴或连轴器之一侧,将千分表按钮置 于连轴器另一侧的外径。将千分表置零。同时 旋转连轴器两侧,确保指标线匹配。重新调整 设备位置,直到偏移达到允许值。

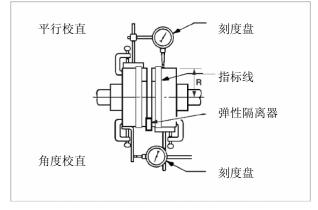


图 11: 使用千分表检查校直

- 6. 再次检查轮毂,确定角度校直和平行校直 的值仍在图 10 所示的范围以内。
- 7. 拧松泵毂上的固定螺钉。在轮毂固定螺钉对面,安装一侧的部件,不要箍紧。扭转两种固定螺钉,使其达到表 4 所示的值。针对 QD 或锥形锁型轮毂,请参考遵守关于轴衬的说明。将另一侧的部件安装到轮毂上。在高速环上安装帽螺钉。如果轮毂的校直误差导致帽螺钉和部件孔对不准,则轻轻旋转轮轴。扭转所有部件和高速环的帽螺钉,使其达到表 4 所示的值。可能

9

¹ Duraflex 是 T.B. Wood 公司的注册商标.

的情况下,再次检查角度校直和平行校直。

A

警告: 谨防部件飞出

须用转矩扳手或其它转矩测量装置安装连轴器 帽螺钉和固定螺钉。未按照提供的转矩值安装 的硬件,可能会变松,并从连轴器组装体上掉 落。

否则会造成严重的人员伤亡,或财产损失。

8. 为连轴器配备的帽螺钉有丝扣粘结涂层, 有助于防止震动导致的松弛。帽螺钉不得 重复使用四次,粘结涂层脱落后,也不宜 继续使用。可向 Bell & Gossett 公司的当地 办事处购买备用帽螺钉。

A

警告: 谨防部件飞出

须用转矩扳手或其它转矩测量装置安装连轴器 帽螺钉和固定螺钉。未按照提供的转矩值安装 的硬件,可能会变松,并从连轴器组装体上掉 落。

否则会造成严重的人员伤亡,或财产损失。

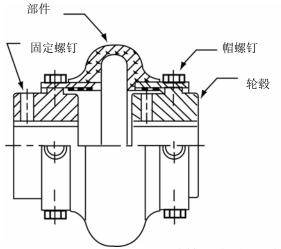


图 12: Woods Duraflex 连轴器-典型无隔离连轴器

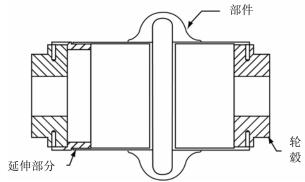


图 13: Woods Duraflex 连轴器-典型隔 离连轴器

表 4: 紧固件转矩值和 Woods Duraflex 连轴 器的最大 RPM

命的取入 KFWI							
	部件和	标准轮	最大 RPM				
	环帽螺	穀固定					
	钉转矩	螺钉转					
基本大小	(ft-lb)	矩(ft-lb)	标准	隔离			
WE2		7	7500	1800			
WE3		7	7500	1800			
WE4	17	7 14 7500		1800			
WE5		23	7500	1800			
WE10		23	7500	1800			
WE20		50	6600	1800			
WE30	30	50	5800	1800			
WE40	30	100	5000	1800			
WE50		100	4200	1800			
WE60		167	3800	1800			
WE70	75	167	3600	1800			
WE80		167	2000	1800			

最后校直

泵组开始运行后,经过足够长的时间,以达到 运行温度, 然后才能进行最后校直。达到正常 运行温度后,稳定泵组,再次检查校直,并相 应抵偿温度。(见**连轴器校直**部分。)

注意: 为适应轮轴的角度校直误差和泵及电机 轮轴的平行偏移,特别使用了弹性可变的连轴 器。但是,偏移的量和/或校直误差值取决于所 用弹性连轴器的类型。如果不进行检查,则连 轴器的校直误差会在很大程度上影响机械密封 件和泵轴承的整体使用寿命。

▲ 警告: 谨防旋转部件

运行泵之前,必须配备所有保护装置。

否则会造成严重的人员伤亡,或财产损失。

吸入和排出管道

安装管道时,请参考水力学会标准,并注意以下防 范措施:

应该把管道接向水泵。

不要把水泵接向管道。这会导致无法进行最后校 直。

在水泵的附近, 为吸入管道和排出管道分别提供独 立的支撑,并进行合理的校直,从而确保拧紧凸缘 螺栓后,管道不会对水泵产生压力。根据支撑的需 要,隔一段距离便使用管吊架或其它支撑部件。如 果管道系统使用了伸缩接头,则应将其安装在支撑 部件以外, 最靠近水泵的地方。伸缩接头应与拉紧 螺栓一起使用,以防止对水泵产生压力。不要将伸 缩接头紧挨着水泵安装,也不要采用会因系统压力 变化而对水泵产生压力的任何安装方法。

尽可能保持管道的平直,避免不必要的拐弯。有必 要拐弯时,使用 45 或月弯 90°的配件,以减少摩擦 损失。

确保使用防漏管道接头。

使用凸缘接头时,确保内径匹配合适。

安装接头时,移除毛刺和尖角。

进行任何连接操作时,切勿"弯曲"管道。如果强力 使吸入或排出管勉强就位,则会导致连轴器和轴承 的磨损。

如果预测会发生温度的变化,则应在系统中安装装 置以减除膨胀,从而防止对水泵产生压力。

如果采用减震垫,则应在水泵的吸入和排出端均采 用弹性管道。

水泵周围的管线应安装隔离阀, 吸入管应安装排水

请参考技术公告 B-876 或 BX-876 和表 5, 查看立 式边缘配置的静态边缘负荷的允许值(VSC和 VSCS 系列)。

排出管道安装了一个 Bell & Gossett 三用阀门,作 为一个止回阀保护泵不受水击作用,作为一个闸门 阀便于维护操作,还有节流功能。

吸入管道

安装吸入管道时,请参考*水力学会标准*,并注 意以下防范措施。(见图 **14**)

吸入管道的大小设置和安装极为重要。管道的选择和安装要保证压力损失最小,且在水泵启动和运行后能够提供充足的液体。不恰当的吸入管道系统会直接产生许多 NPSH (净有效吸水头)问题。

吸入管过小导致的摩擦损失会增加入泵液体的 流速。请参考*水力学会标准*,查看入管的大小 设置和速度要求。

给水平双吸泵的吸入管道安装弯管时,应该遵守水力学会标准,因为弯管附近总是有不均匀湍流。如果它不处于垂直位置(以水泵的吸入管嘴为参照),将会导致进行泵轮一侧的液体多于另一侧。(见图 15)。这会导致高度不平衡的推力负荷,从而使轴承过热,并加快磨损,还会影响水力性能。

对于入液端的管道异径管,一个异径管最多只能减少一次管道直径。

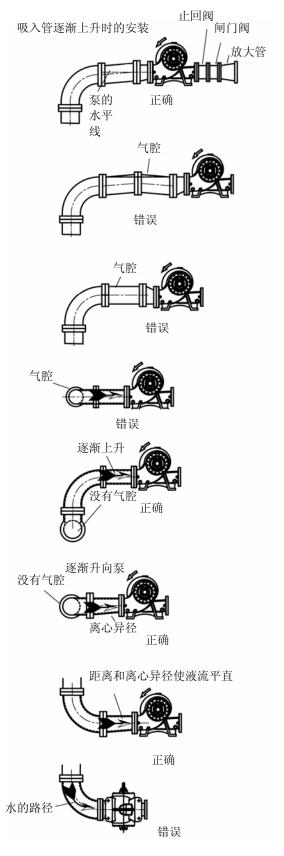


图 14: 安装吸入管道 (未显示管道支撑件)

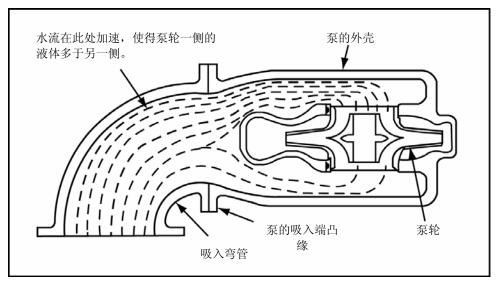


图 15: 在靠近泵的弯管处,湍流导致双吸泵轮的负荷不均衡

向上吸液时,吸入管应该向上倾斜,接入水泵 嘴。水平的吸入管线必须逐渐上升,接入泵 体。如果管道有高点,则此处可能充满气体, 从而妨碍泵的正常运行。

为便于清洁水泵的液体通道,而不把水泵拆开,则应在吸入凸缘旁边,安装一小段可随时拆下的管道(短带束平叠的水带或短管)。这样,在泵轮发生堵塞时,只要拆下短管(或部分管道)即可。

吸入管道的阀门

在吸入管道安装阀门时,请注意以下防范措施:

在使用所推荐的直线管道前,应该安装吸入管 道阀门。

如果水泵的运行条件是静态向上吸液,则可在吸入管线安装一个底阀,使得不必每次启动水泵时,均做好准备。这种阀门的类型应是片状阀,而不是多弹簧式,大小应该合适,以防止在吸入管线产生额外摩擦。底阀和管道的大小设置应使得水泵的可用净有效吸水头最大,而吸入管线损失最小。

止回阀以正常情况安装到排出管道。在吸入管 道安装止回阀以前,要考虑它会给水泵造成的 压力下降、可能的水击作用以及致使整个水泵 的涡壳经受排出压力的可能。

如己用底阀,或发生"水锤效应"的时候,请在 关闭泵之前要慢慢关闭出水口阀门。

绝不可以利用水泵的吸入端的阀门来调节流量。吸入阀门只用于隔离水泵,以进行维护,且应保证时时就位,以防止产生气穴。

出水管道

出水管道的最大液流速不得超过每秒钟 4.6 公尺。如果向外管道安有止回阀,液流速应低于此值。出水管道和配件的大小通常取决于系统损失、生命周期成本和操作因素。有些高能泵易受到水泵的出管附近所固定的扰流装置的影响。若对直管长度需要达到的最小值有疑问,敬请咨询 Bell & Gossett 公司。

压力计

应在吸入和排出管嘴的量规头安装大小合适的 压力计。这些仪器便于操作员观察水泵的运行 情况,和确定水泵的运行情况是否符合性能曲 线。如发生气穴、气锁或其它不稳定运行情况 时,可以从压力计观察到排出压力的变化。

水泵的隔离

对水泵进行隔离时,不能隔离水泵的轴承支架,否则泵体内部的热量难以散发。这可能导致轴承温度升高和轴承过早损坏。

图 16: 泵的隔离

水泵的密封

机械密封件

在某些应用中,机械密封优于填料密封,因为前者的密封质量更高,且有效时间更长。在类似的应用中,密封件正确安装后,有效的时间也长于填料密封。从填料密封改为另一种密封方式时,可由专业服务人员在现场完成。转换部件可从 Bell & Gossett 公司的当地办事处购买。

填料

水泵吸入的液体中所含有的杂质不能进入填料函。这些杂质可能对轴套产生严重的磨损或腐蚀,也会使填料迅速变质;甚至会堵塞填料函的冲洗和润滑系统。必须时时为填料函提供清洁于净的液体,以冲洗和润滑填料函。

一天中,水泵的系统压力发生变化的话,将难 以调整填料。需要考虑换用机械密封。

通常情况下,在装运前对标准泵进行了填料。 如果装运后 60 天内即对水泵进行安装,则填 料状况良好,可提供充足的润滑作用。如果水 泵存放了较长一段时间,可能有必要对填料函 重新填料。但不管怎样,都需要在启动水泵以 前,检查填料。

注意:关于填料调整的内容,请参看维护部分。

在某些应用中,可以使用内部液体(水泵吸入的液体)润滑填料。但这种情况下,必须具备以下各个条件:

- 1. 液体干净,没有物理沉淀和化学沉淀,且 与密封材料相容。
- 2. 温度高于 0°C, 低于 71°C。
- 3. 吸压低于 482.6 KPa。
- 4. 润滑液(水泵吸入的液体)具有润滑作用。
- 5. 液体没有毒性,不挥发。

如果液体含有固体物质或与填料物质不相容,则需要提供外部冲洗液。一般而言,只要内部液体不满足上述条件中的任何一条,就需要使用外部液体(来自外部)。

标准填料函由一些填料环(参考**组装和拆卸程序**部分,查看环的数量)、一个套环和一个填料函盖组成。有一个轴套穿过填料函,位于填料函盖的下面,以保护轮轴。

填料函内,套环的正上方有一个螺纹孔,引入干净的冷却介质。必须时时为填料函提供压力足够高的冲洗液,以保证填料函没有外部物质,否则这些物质会迅速破坏填料并划伤轴套。

只需要一定量的冲洗液即可形成从填料函流入泵壳的定向流体,但冲洗液的压力很重要。密封水的流速约为 0.5678 M³/Hr,压力约高于吸压 1.03 to 1.38 Bar。(约为每秒钟一(1)滴)。

需要调整外部冲洗液,使得填料只微微发热,而填料函的滴液十分缓慢。外部液源的过高压力对填料的损害极大。只有磨损性的泥浆需要更高压力,而非干净的液体。可以检查渗漏情况,以确定是提高还是降低外部压力。如果渗漏出了泥浆,则提高压力,直到填料函中只滴出干净液体。如果滴液有腐蚀性或对人体有害,则应该加以收集并用管道排走。

通常的错误做法是,打开外部管道阀门后,箍紧填料函盖,以控制滴落情况。只有对两者同时做出调整,才能达到最优状况。谨慎的控制是决定填料和轴套寿命的最重要因素。

V 型切割泵轮边缘

多数泵轮边缘为标准直线切割。但是,某些大小的泵采用了 V 型切割,以达到更小的直径(见图 17)。不管是哪种切割类型,铭牌上的泵轮直径均以 D_{ref}表示,铭牌选自所公布的性能曲线。

如果泵轮的直径 D_{ref} 小于表 5 中 D_{shroud} 的值,就需要采用 V 型切割。

D_{shroud} 是护罩的边缘直径。如表 5 所示,针对同样大小的泵的所有 V 型切割直径,这个值是确定的。

D_{hub} 是轮毂的直径(V型切割的底部)。

给出 D_{ref} 后,为达到相应的性能,需要将 D_{shroud} 的值修整为表 5 中的值。之后使用图 18 中的表格,找到相应大小的泵和 D_{ref} 值对应的 D_{hub} 值。

例如:为将大小为 8x10x10.5A 的叶轮的 D_{ref} 修整为 8.000,根据表 5,将外罩修整为 8.250" (D_{shroud}),根据图 18,将 V 型底部修整为 7.750" (D_{ref})。

表 5: 要求的 V 型切割

P ** > 14**	<u> </u>			
泵的大小	D _{shroud}			
6x8x10.5A	8.000 in.			
8x10x10.5A	8.250 in.			
10x12x10.5A	9.750 in.			
12x14x13.5A	11.125 in.			
14x16x13.5A	12.375 in.			

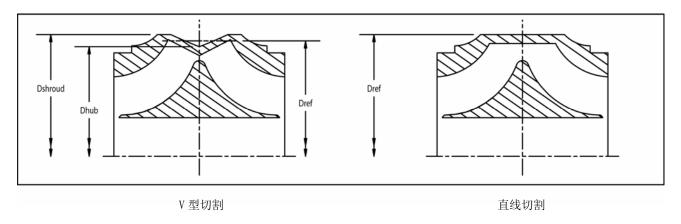


图 17: 直线和 V 型切割叶轮

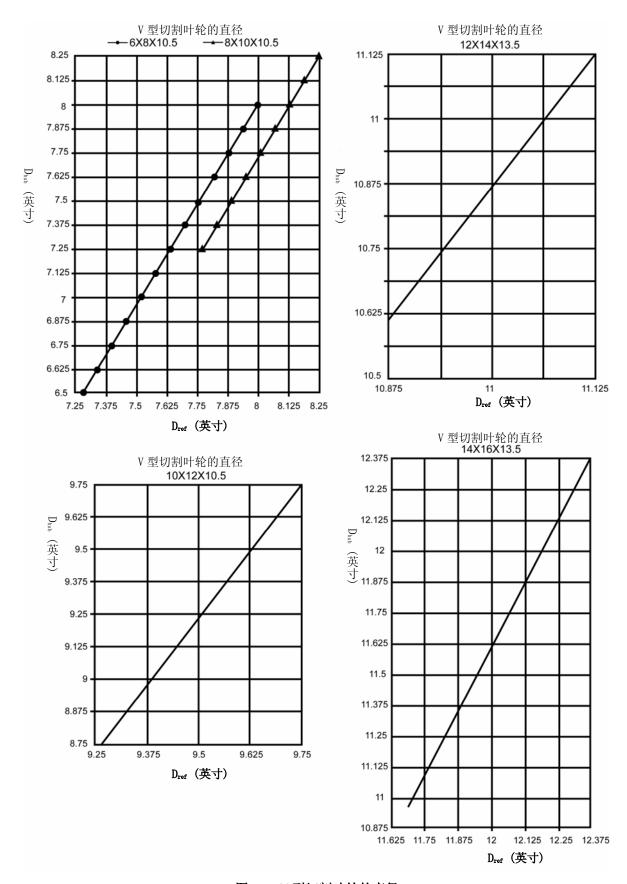


图 18: V 型切割叶轮的直径

冲洗

需要冲洗新、旧系统,去除所有外部物质。厚氧化 皮、焊接飞溅物、金属丝或其它较大外部物质会堵 塞叶轮。这会降低水泵的工作能力,产生气穴、多 余震动和/或对临近的间隙部件(轴承环、密封件、 轴套等等)造成损坏。

填充

通气孔应位于最高点,以利于封存的气体散发。但 是,如果气体易燃、有毒或有腐蚀性,则应该使其 散发到适当的地方,以防止对人员或系统的其它部 件造成损害。 应该检查管吊架和固定物,确保其固 定正确,可以承受水泵及泵体内水的重量。

填充系统时,需要关闭所有排水管。填充要缓慢进 行, 防止过快的速度导致泵吸部件的旋转, 否则会 对水泵或电机造成损坏。检查固定物和吊架的正确 安装时,可以把千分表固定到任一硬性结构上,该 结构不与管道连接,将指针按钮置于管嘴轴向的水 泵法兰上。在填充的过程中,如果指针移动,则表 明支撑物、固定物和支撑物安装不当或固定有误, 应该加以修正。

启动准备

如果水泵的吸入管是正水头,则进行启动准备时, 可以打开吸入阀门, 拧松(但不要移除)外壳顶部 的通气孔插头,将气体排出外壳。

如果水泵的吸入管是升程,则进行启动准备时,必 须采用其它方法,如采用底阀、喷射器或人工填充 外壳和吸入管线。

▲ 注意: 谨防密封件损坏

勿使泵组干燥运行,以防对密封件造成损坏。

否则,可能对设备造成严重损坏和/或对人员造成中 度伤害。

在对泵体进行通气的过程中, 应手动旋转泵轴数 次。

启动预检查

▲ 谨防意外启动

进行维护操作之前, 必须拔掉或关闭电源。

否则会造成严重的人员伤亡,或财产损失。

▲ 警告: 谨防电击

电气连接须由专业电工完成, 必须遵守所有的适用 规则和条款,操作无误。

否则会造成严重的人员伤亡,或财产损失。

在首次启动水泵之前,检查以下几项内容:

- 1. 检查水泵和电机的校直(参考连轴器校直部 分, 查看校直要求)。
- 2. 对照接线图,检查电机和启动装置的所有连 接。对照电机铭牌,检查管线电路的电压、相 位和频率。
- 3. 检查吸入和排出管道以及压力计的运行情况。
- 4. 手动转运旋转部件,确保其可以自由旋转。
- 5. 检查填料函的调整、润滑和管道(只针对填料 密封)。
- 6. 检查电机润滑。参照电机安装、运行和维护手 册。
- 7. 确保泵轴承的润滑恰当。参见润滑部分的泵轴 承段落。
- 8. 连轴器需要润滑时,确保其润滑恰当。参见润 滑部分的**连轴器**段落。
- 9. 确保泵体充满了液体,所有阀门安装正确有 效,排出阀门关闭,吸入阀门完全打开。从外 壳的顶部排出所有气体。
- 10. 检查旋转情况。确保电机运行的方向与泵外壳 的箭头指示的方向一致, 因为水泵运行时, 旋 转错误会导致严重损坏。每次拔出电机导线 时,都要检查旋转情况。

▲ 警告: 谨防旋转部件

运行水泵之前,必须配备所有保护装置。

否则会造成严重的人员伤亡,或财产损失。

启动

- 1. 关闭排水阀和排出管线的阀门。
- 2. 将吸入管线的所有阀门打开。
- 3. 缓慢打开填料函的冲洗水。(如果泵吸液体含 有杂质或为了防止漏气,则这些管线应该总是 打开的。)

- 4. 进行启动水泵前的准备工作。
- 5. 启动水泵的电机(涡轮和发动机可能需要预热;请咨询制造商,以获取说明)。

注意: 如果在启动水泵的过程中,不再具备准备条件,则应该关闭水泵,修正条件,然后重新启动水泵。

- 6. 在水泵全速运行后,缓慢打开排出阀门。启动水泵后,应立即进行此操作,以防止零流量运行对水泵造成损失。
- 7. 调整冲洗管线阀门,以为填料函生成建议达到 的压力。

可选检查内容

- 1. 电机/泵旋转:每次拔出电机导线时,都要检查 旋转情况。确保电机运行的方向与水泵外壳的 箭头指示的方向一致。因为水泵运行时,旋转 错误会导致运行不稳和异常震动。
- 2. 流量:现场难以准确测量流速(体积/时间)。 可能的方法有文丘里量计、测流嘴、量孔板, 或对湿井的水位下降进行计时。记录全部读 数,供以后参考。
- 3. 压力:检查和记录吸入和排出压力计的读数, 供以后参考。同时记录电压、各个相位的电流 强度、千瓦数(有指示瓦特计时)和水泵吸速 度。
- 4. 温度:使用温度计,检查和记录轴承温度。温度不应超过 121℃。
- 5. 震动: 离心泵的可接受震动等级取决于水泵和 支撑结构的刚性。参考水力学会标准,获取不 同种泵的完全描述和表格数据。
- 6. 声音: 受管道、阀门、电机、齿轮等等的噪音 的影响,现场难以测量声音的水平。请遵守水 力学会标准的建议。
- 7. 通过排出阀门,调节水泵的排出。

▲ 注意: 谨防气穴

调节泵的排出时,切勿关闭吸入阀门。

否则,可能对设备造成严重损坏和/或对人员造成中度伤害。

防冻

在冰冻的条件下,关闭泵时,需要排空泵体,并排空外壳的所有液体。.

现场测试

可向 Bell & Gossett 公司的当地办事处索取特定水 泵的典型性能曲线。需要时,可以同时进行现场测 试。Bell & Gossett 的所有测试和曲线均基于水力 学会的标准。现场测试也必须根据这些标准进行。

如无特别协议,所有工作能力、水头和效率均基于工厂测试数据,所采用的是干净新鲜的冷水,温度不超过 29.4°C。

维护

一般维护和定期检查

由于运行环境差别很大,因而没有普遍适用于所有 离心泵的预防性维护程序。但必须考虑和遵守一些 常规检查。建议对定期检查和水泵的维护工作做永 久记录。对维护程序的此种认识,有利于维持水泵 的良好工作状况,并防止巨大的停工损失。

正确维护离心泵时,最佳方法之一是记录实际运行 小时数。之后, 在水泵的运行时间达到预定时间 后,对水泵进行全面检查。运行时间的长短因应用 情况不同而不同,完全根据经验确定。但是,新设 备运行相对较短的时间后,即应进行检查。下一个 检查期间可以适当延长。如此操作, 直到达到最大 运行期间; 此后每一运行期期满, 即进行一次检

润滑

泵轴承

在工厂装运时, 轴承外壳填充有润滑脂, 如果 水泵运行前的存放环境清洁、干燥,则启动水 泵以前,不需要对轴承进行额外维护。水泵启 动后,经过大约一小时,应该检查轴承是否运 行良好。

不需要定期添加润滑脂。如果维护时, 移走了 轴承支架,需要全面清洁轴承外壳,确保其不 受泥尘和其它杂质的影响。

再次组装泵时,使用新的轴承和唇形密封件。 使用轴承支架下面所提供的润滑脂配件, 填充 轴承空腔。

使用滑脂枪将 Exxon Polyrex EM®2润滑脂注 入空腔, 直到润滑脂从唇形密封处溢出。

只推荐使用 Exxon Polyrex EM®润滑脂。切 勿使用任何其它润滑脂。

▲ 注意: 谨防轴承损坏

不要将不同的润滑脂混用,因为它们会逐渐分离, 从而不能为轴承提供恰当的润滑。

否则,可能对设备造成严重损坏和/或对人员造成中 度伤害。

通常情况下,滚珠轴承轴承需要的最大运行温 度不应超过 121°C。如果轴承框架的温度高于 这个极限,则应关闭泵,检查问题的成因。使 用精确测量仪器测量温度,以确保无误。

连轴器

聚合物和弹性材料的连轴器无需维护, 不需要 进行润滑。如果采用其它材料的连轴器,则遵 守连轴器制造商的维护说明。

关于密封

机械密封件

机械密封件通常无需维护。为保护密封件,请 不要使泵干燥运行。如果发生泄漏,就更换密 封件。

填料 (无石棉)

Bell & Gossett 公司不主张用含石棉材料的填 料。

装运前,已经对某些泵进行了填料。在水泵运 行之前, 请检查填料状况。如果装运后六十 (60) 天内即对水泵进行安装,则填料状况良 好,可提供充足的润滑作用。如果水泵存放了 较长一段时间,可能有必要对填料函重新填 料。但不管怎样,都需要在启动泵以前,检查 填料。

材质柔软、润滑良好的填料会减少填料函的阻 力,并防止对轴套产生额外磨损。标准填料可 向 Bell & Gossett 公司的当地办事处购买。

如果已经对水泵进行了填料,则首次启动时, 建议轻轻弄松填料,但不要造成漏气。当水泵 试车时,缓慢平稳地拧紧填料函盖螺栓。不要 使填料函盖将填料压得过紧, 以致于不产生任 何滴液。这会引起填料的燃烧, 划伤轴套, 并

² Polyrex EM 是 Exxon Mobile 公司的注册商标.

妨碍液体通过填料函以冷却填料。如果填料函 内的摩擦妨碍人工转动旋转部件,则表明填料 函的填料和调整不当。运行正常的填料函应是 微温运行,并缓慢滴出密封液。水泵运行了一 段时间, 且填料完全进入试运转状态后, 填料 函的滴液速度应至少为每分钟 40 至 60 滴。这 个速度表明填料正确,轴套润滑恰当,冷却合 适。

注意: 填料时, 轮轴或轴套的偏轴外移会导致 过度泄漏。必须进行校正。

应该经常检查填料,根据需要更换填料;无法 准确预计填料的状况。从填料函移除陈旧填料 时,应该使用填料工具。绝对不要重复使用己 用填料或只是简单地增加一些新的环。注入新 的填料前,确保对填料函进行了彻底的清理。 同时检查轴套, 查看磨损状况。必要时, 加以 更换。

应将新填料(无石棉)小心注入填料函。如果 采用模压环,则环的侧面打开,先将接头推入 填料函。一次安装一个环,每个环定位稳固, 后面的接头与前面的接头交错旋转 90°。

如果采用盘根密封,则将一个环切割为对接接 头或斜削接头的大小。切割精确的对接接头优 于配合不当的斜削接头。将这个环套在轴套 上,确保长度合适。之后将这个环取下,作为 参照样本,对所有其它环进行切割。将环置于 轴套周围,此时应该形成紧密的连接。将第一 个环置于填料函底部。之后将各个环依次放 入,并按上述的交错方法安装接头,确保每个 环定位稳固。

确保套环位于填料函内,密封水入管的下面。 套环的功能是在轮轴周围形成液体密封, 防止 填料函漏气,并润滑填料。只有正确安装套 环,才能使其发挥作用。

泵受水淹损坏后的维护

▲ 谨防意外启动

进行维护操作之前, 必须拔掉或关闭电源。

否则会造成严重的人员伤亡,或财产损失。

▲ 警告: 谨防电击

电气连接须由专业电工完成, 必须遵守所有的适用 规则和条款,操作无误。

否则会造成严重的人员伤亡,或财产损失。

如果水泵受到水淹,则更换轴承和润滑脂。请有资 质的电机店评估电机的可用性,有可能电机不能继 续使用。清理并检查机械密封件、填料函及其填料 环。必要时进行更换。需要进行润滑的连轴器应该 加以更换。

故障检修

在常规维护检查之间,警惕电机或泵的异常状况。以下是常见的故障表现。立即修正故障,以防止检修和停工的巨大损失。

成因	措施					
没有液流						
1. 没有做好启动准备	将水泵和吸入管注满液体。					
2. 不再具备准备条件	检查吸入管接头和装配处是否有泄漏,给外壳通气,排空积聚的气窗 体。					
3. 吸入升程过高	如果入管没有障碍物,则检查管道摩擦损失。但静态升程可能过高。 在水泵运行时,用汞柱或真空计进行测量。如果静态升程过高,则必 须升高泵吸液体的高度或降低水泵的高度。					
4. 排水扬程过高	检查阀门是否打开。					
5. 速度过低	检查布线是否正确。频率可能过低;电机可能有断线。确保电机速率 与水泵的铭牌上所示的速率相匹配。					
6. 吸入扩散管或过滤器筛堵塞	拆开清理。					
7. 叶轮完全堵塞	拆开水泵,清理叶轮。					
	液流不足					
8. 吸入管道漏气	堵住入管,使管线在压力下工作,测试凸缘是否漏气。如果压力计显示压力下降,则表面此处有漏气。					
9. 速度过低	见第5项。					
10. 排水扬程过高	检查管道摩擦损失。采用大型管道可以改正此状况。检查阀门是否全 部打开。					
11. 吸入升程过高	见第3项。					
12. 叶轮部分堵塞	见第7项。					
13. 气穴; NPSH A 不足(取决于 安装)	a. 提高泵的有效吸水头					
	b. 降低吸入管道的液体温度。					
14. 叶轮缺陷	检查叶轮、轴承和轮轴。找出问题成因,并加以更正。					
15. 旋转方向错误	比较电机的旋转方向与水泵的外壳上箭头指示的方向。两个方向不符时,进行必要的更正。					
16. 叶轮方向错误	改变轮轴上叶轮的方向。					
17. 叶轮直径过小(如果以上成因	与工厂协调,看是否可以采用较大的叶轮,否则就降低管道损失或提					
均不存在,则此成因很可能成立)	高速度,或同时采用这两项措施。但谨防造成电机过载。					
18. 速度过低	见第5项。					
19. 吸入管道漏气	见第8项					

成因	措施				
压力不足					
20. 机械缺陷	见第 14、15 项。				
21. 液体通道障碍物	拆开水泵,检查叶轮和外壳的通道。移除障碍物。				
22. 液体中含有气体	在系统管道安装排气装置或修好泄漏。				
23. 叶轮直径过小(如果以上成因	见第 17 项				
均不存在,则此成因很可能成立)					
24. 速度过低	见第5项。				
25. 系统流量过多	平衡系统				
	泵运行一小段时间后,即停止				
26. 启动准备不完全	将水泵、管道和阀门的空气排空。如果吸入管线有高点,导致无法排空气体,则需要对高点进行调整。				
27. 吸入升程过高	见第3项。				
28. 吸入管道漏气	见第8项。				
29. 液体中含有气体	见第 22 项。				
	泵耗电过多				
30. 扬程低于额定值;因而导致水泵吸过多液体。	将泵轮的 OD 车床加工为厂商建议的大小。				
31. 气穴	见第 13 项。				
32. 机械缺陷	见第 14、15 项。				
33. 液体重于(粘度或比重)允许 值。	使用更大的电机。请咨询厂商,获知建议的大小。测试液体的粘度和比重。				
34. 旋转方向错误	见第 15 项。				
35. 吸入或排出管道的额外压力导 致外壳变形。	检查校直。检查水泵的泵轮和外壳之间的摩擦。更换受损部件。				
36. 运送、运行或大修过程中产生的损坏,造成轮轴弯曲。	开启轴承颈,检查转子是否有缺陷。总指示器外移量在轮轴处不应超过 0.0508mm,在泵轮进口外径处不应超过 0.1016mm。				
37. 水泵关键部件的机械故障	检查轴承和叶轮是否受损。这些部件的任何异常均会连轴器轴产生阻力。				
38. 较对不当	重新校对水泵和电机。				
39. 速度可能过高	检查电机的频率设置。确保电机的速度与泵的铭牌上所示的速度相匹配。				

保护装置

ANSI/OSHA 连轴器保护装置的移除/安装

▲ 警告: 谨防极端高温和低温

如果泵、电机或管道的工作温度过高或过低,则必 须加以保护或隔离。

否则会造成严重的人员伤亡,或财产损失。

移除

(见图 19、20。)

- 1. 同时移除固定外保护装置上下两部分的两 个帽螺钉和硬件。移除外保护装置的上半 部分。
- 2. 同时移除固定内保护装置上下两部分的两 个帽螺钉和硬件。移除内保护装置的上半 部分。
- 3. 对于某些泵组,可能需要移除连轴器,才 能继续移除余下的保护装置硬件。
- 4. 移除将保护装置固定到其支撑部件的帽螺 钉和硬件。
- 5. 对于安装有隔离式连轴器的泵组,内保护 装置的下面安有第二层支撑部件。这时, 需要移除固定在第二层支撑部件上的两个 帽螺钉和硬件。
- 6. 移除将保护装置的支撑部件固定到底座栏 的帽螺钉和硬件。移除保护装置的支撑部 件及保护装置的下半部分。

安装

(见图 19、20。)

- 1. 将内保护装置的下半部分固定到外保护装置的下 半部分。
- 2. 托起连轴器下面的较低保护装置,将保护装置支 撑部件滑入底部保护装置和较低保护装置之间。
- 3. 将保护装置安装到支撑硬件, 但不要筛紧。将支 撑部件移动到底座的合适位置, 安装硬件, 以支 撑底座。
- 4. 滑动外保护装置, 使其与电机表面的距离在 6.35mm 以内。
- 5. 滑动内保护装置, 使其与泵支架表面的距离在 6.35mm 以内。
- 6. 箍紧硬件。

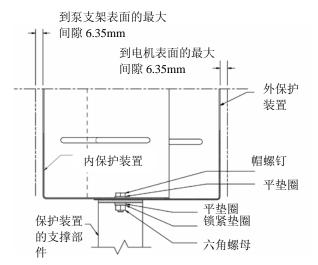


图 19: 连轴器保护装置

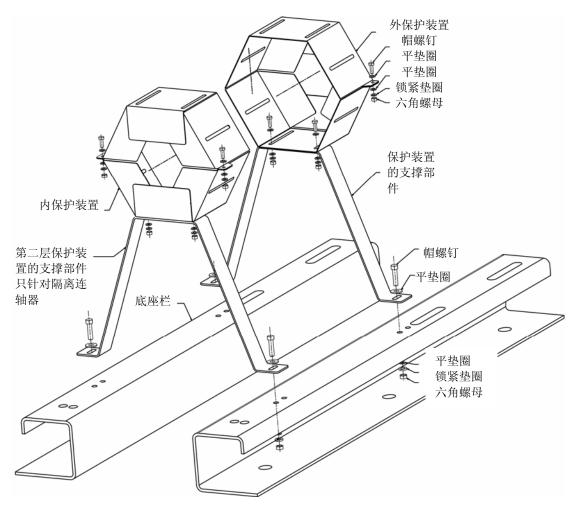


图 20: 安装/移除连轴器保护装置

支架保护装置

▲ 警告: 谨防极端高温和低温

如果泵、电机或管道的工作温度过高或过低,则必 须加以保护或隔离。

否则会造成严重的人员伤亡,或财产损失。

填料函盖/填料函与轴承外壳之间的裸露轮轴部分也 安装了保护装置予以保护(见图 21)。每个支架有 三个保护装置: 其中两个用于保护侧窗, 一个用于 保护顶窗。

图 21: 安装到内侧轴承支架的支架保护装置

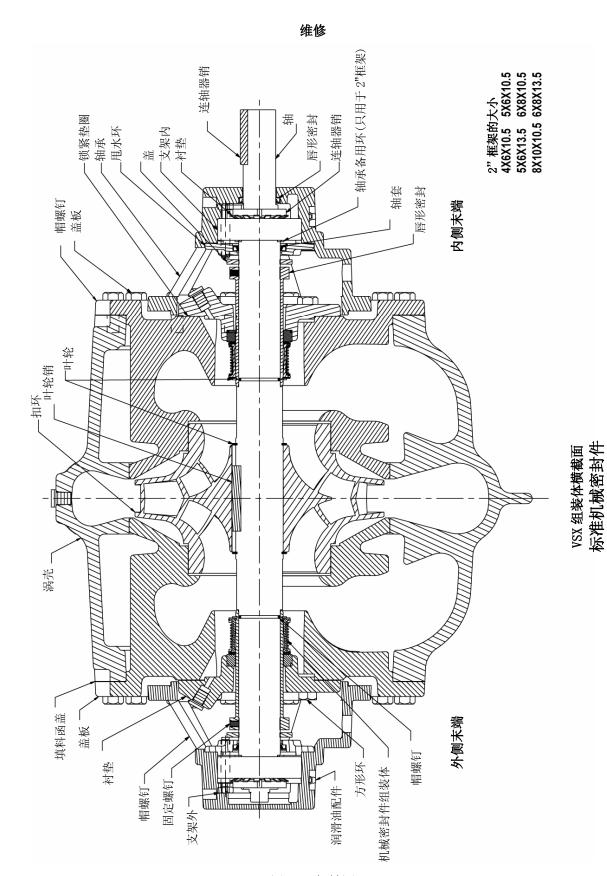


图 22: 机械图

一般拆卸程序

关闭

以下是多数情况下(如,进行维护时),正常关闭 泵的主要步骤。必要时,进一步调整工艺管线和阀 门等。

1. 关闭水泵的电机。(关于特殊运行情况,请参 考制造商的说明。)

▲ 谨防意外启动

进行维护操作之前,必须拔掉或关闭电源。

否则会造成严重的人员伤亡,或财产损失。

- 2. 关闭吸入和排出阀门。
- 3. 对于使用外部冲洗液的泵,关闭冲洗管线阀 门。但在水泵全部排干液体以前,需要打开这 些管线,以防止污染填料。
- 4. 按照要求,打开排水阀门和外壳通气孔。

注意: 谨防极端高温和低温

操作前, 使水泵的温度达到可接受的水平。打开排 水阀门。待液体不再从排出阀门流出后,再进行操 作。如果液体不停地从排出阀门流出, 且隔离阀门 不能进行密封,则需要在操作前加以修护。在液体 不再从排出阀门流出后,保持阀门打开,继续操 作。移除泵外壳底部的排水塞。不要再次安装使用 此排水塞, 也不要在拆卸完成以前关闭排出阀门。

否则,可能对设备造成损坏和对人员造成中度伤 害。

移除轴承框架时的拆卸程序一适用于所有泵

- 1. 移除连轴器保护装置。参见保护装置部分。
- 2. 移除将连轴器部件固定到轮毂上的帽螺钉。移 除连轴器部件。根据连轴器的类型, 选择步骤 a 或步骤 b。
 - a. 对于无隔离式连轴器组装体: 移动 电机,以进行维护,移除水泵的连 轴器护罩。
 - b. 对于隔离式连轴器组装体: 移除水 泵的连轴器护罩。
- 3. 移除轴承盖的四个帽螺钉。
- 4. 移除四个轴承支架帽螺钉。
- 5. 用螺旋千斤顶移除轴承支架(见图 23)。还可 以使用撬杆(见图 24)。

图 23: 使用千斤顶移除外侧轴承支架

图 24: 使用撬杆移除内侧轴承支架

- 6. 把锁紧垫圈片向后扳弯, 移除锁紧螺母和锁紧 垫圈。
- 7. 用拔具移除轴承(见图 25)。也可用通用夹具 箱(部件号: AC2394, 见图 26)。泵的框架 为 2" (50.8mm) 时不要使用通用夹具, 因为轴 承后备环可能会损坏轴承盖的唇形密封件。 (图 22 是 2" (50.8mm) 框架泵的大小列表)。

图 25: 使用拔具移除轴承

图 26: 使用通用工具移除轴承

8. 只用于 50.8mm 框架: 移除轴承后备环(见图 27)。(图 22 是 50.8mm 框架泵的大小列表)。

图 27: 移除轴承备用环(只用于 2"框架)

- 9. 从轮轴上移除轴承盖。移除挡油环。
- 10. 重复步骤 1 至 9, 移除另一侧的轴承框架。完成以后,根据水泵的密封件类型,实施恰当的拆卸程序。
- **11.** 移除两个轴承盖和内侧轴承支架的唇形密封件。

移除标准机械密封件的拆卸程序

- 1. 拧松轴套的固定螺钉。
- 2. 移除填料函盖组装体的四个帽螺钉。
- 3. 从轮轴上移除填料函盖组装体和轴套(见图 28)。可能需要用到轴承拔具,它附在轴套的台阶型法兰处。

图 28: 移除填料函盖组装体和轴套

- 4. 移除填料函盖衬垫
- 5. 按压机械密封头,从轴套槽中移除扣环(见图 29)。

图 29: 移除了扣环的机械密封头和填料函盖

- 6. 从轴套组装体移除机械密封头。
- 7. 从轴套移除填料函盖组装体。
- 8. 从填料函盖孔移除固定机械密封座。
- 9. 从轮轴移除方形环。

- 10. 重复步骤 1 至 9, 移除另一侧的密封件。
- 11. 如果只更换机械密封件,则继续**安装标准机械 密封件程序**部分。

如果需要拆卸整个泵,则继续**移除盖板和轮轴 组装体的拆卸程序一适用于所有水泵**部分。

移除填料函和填料的拆卸程序。

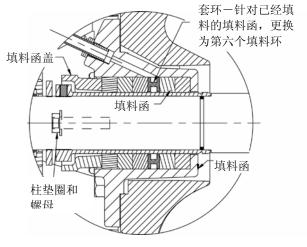


图 30: 水淹后的填料函横截面

- 1. 移除螺母、垫圈、柱螺栓和填料函盖。
- 2. 移除填料环和套环。
- 3. 拧松轴套的固定螺钉,从轮轴移除轴套。可能需要用到轴承拔具,它附在轴套的台阶型法兰处。
- 4. 移除填料函的四个帽螺钉。
- 5. 移除填料函。
- 6. 移除填料函衬垫。
- 7. 从轮轴移除方形环。
- 8. 重复步骤 1 至 7, 移除另一侧的部件。
- 9. 如果只更换填料环和轴套,则继续**安装填料函 和填料的组装程序**部分。

如果需要拆卸整个水泵,则继续**移除盖板和轮 轴组装体的拆卸程序一适用于所有泵**部分。

移除集装式密封件的拆卸程序

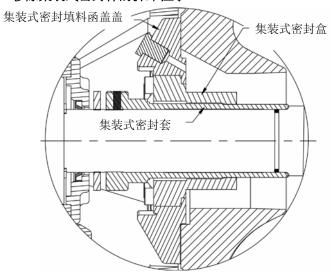


图 31: 集装式密封件横截面

- 1. 拧松轴套的固定螺钉。
- 2. 移除四个集装式密封件的帽螺钉。
- 3. 从轮轴移除集装式密封件(见图 32)。

图 32: 移除集装式密封件

- 4. 移除集装式密封件的衬垫。
- 5. 如果只需更换集装式密封件的盒,则从盒/轴套上拧下螺钉,将其拧到同一部件的螺纹孔。平稳地箍紧,以将盒从填料函盖拉出,将其从轮轴上移除(见图 33)。

图 33: 集装式密封填料函盖与养护工具(盒与套)

- 6. 如果只需更换集装式密封件或集装式密封盒, 则继续安装集装式密封件的组装程序部分。
- 7. 如果需要拆卸整个水泵,则继续移除盖板和轮 **轴组装体的拆卸程序一适用于所有水泵**部分。

▲ 注意: 谨防设备损坏

为防止造成密封件过早失效或任何伤害,不得将高 进压 VSX 泵的平衡式密封件替换为成套的密封 件。

否则,可能对设备造成严重损坏和/或对人员造成中 度伤害。

移除盖板和轮轴组装体的拆卸程序一适用于所有水 泵

- 1. 确保使用保护带或螺母保护轴螺纹(见图 34) 。
- 2. 移除涡壳帽螺钉。使用螺旋千斤顶,将盖板从 涡壳内拉出(见图34)。

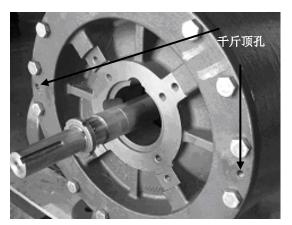


图 34: 使用千斤顶移除盖板

- 3. 移除涡壳衬垫。
- 4. 将泵轮和轮轴组装体从涡壳拉出(见图 35)。

图 35: 移除轮轴组装体

- 5. 重复步骤2至4,移除其它盖板。
- 6. 移除泵轮扣环。
- 7. 泵轮是被压配到轮轴上的。从轮轴移除和向轮 轴固定泵轮时需要用到压力机。
- 8. 从轮轴移除泵轮销。

安装盖板和轮轴组装体的组装程序一适用于所有水

注意: 检查所有部件的磨损和损坏情况。必要时, 进行更换。

- 1. 将叶轮销插入轮轴销槽。
- 2. 安装第一个叶轮扣环(见图 36)。

图 36: 安装叶轮扣环

参考图 **52**,继续操作前,先检查叶轮、轮轴和涡壳的位置是否正确,以实现所需的旋转。

- 3. 以恰当的压力,将叶轮压配到轮轴上。
- 4. 安装第二个叶轮扣环。
- 5. 使用 P-80⁶³橡皮润滑乳剂、肥皂水或等效物润滑方形环,将其滑到轮轴末端,以备安装到方形环槽(见图 37)。

图 37: 安装方形环

6. 将涡壳衬垫滑到盖板上(见图 38)。为使衬垫 就位,可能要用到润滑脂。

图 38: 将衬垫安装到盖板

7. 使用装入涡壳的导销(螺杆或无头螺栓),安装盖板。一个盖板有一个凹口(见图 39),另一个盖板有两个凹口(见图 40)。确保盖板的凹口与涡壳的凹口校直无误。

图 39: 使用导销安装盖板

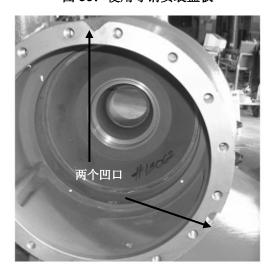


图 40: 安装一个盖板后,水泵的内部图

30

³ P-80 是 International Products Corp 公司的注册商标。

8. 安装涡壳帽螺钉。

注意:参考表 6,查看对于帽螺钉转矩的要求。

9. 将轮轴组装体插入涡壳(见图 41)。确保使用保护带或螺母保护轴螺纹(见图 34)。

图 41: 安装轮轴组装体

10. 重复步骤6至8,安装每二个盖板。

安装标准机械密封件的组装程序

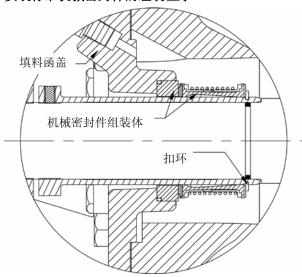


图 42: 材料机械密封件横截面

1. 将静态机械密封座推入填料函盖孔(见图 43)。使用 P-80 橡皮润滑乳剂、肥皂水或等 效物轻度润滑填料函盖孔,便于组装。

注意:小心拿放密封件。进行组装前,清理填料函 盖和密封件。小心不要在组装时损坏密封件。

图 43: 安装到填料函盖的密封座

- 2. 将填料函盖滑到轴套上。
- 3. 使用 P-80 橡皮润滑乳剂、肥皂水或等效物轻度 润滑轴套,将机械密封头滑到轴套上。
- 4. 按压机械密封头,将扣环安装到轴套槽中。
- 5. 只为轮轴上将要置于轴套下方的部位,涂抹防 卡死化合物(见图 44)。

图 44: 为轮轴涂抹防卡死化合物

6. 将填料函盖衬垫安装到填料函盖。为使衬垫就位,可能要用到润滑脂。将整个组装体滑到轮轴上,直到轴套落至其定位轴肩(见图 45)。

图 45: 安装填料函盖组装体

- 7. 安装四个填料函盖组装帽螺钉。
- 8. 将固定螺钉安装到轴套, 拧紧到 50 inch-lbs。
- 9. 安装挡油环。
- 10. 重复步骤 1 至 9,安装另一侧的密封件。完成后,继续**安装轴承框架的组装程序一适用于所 有泵**部分。

安装填料函和填料的组装程序

- 1. 将填料函和浸湿断头安装到支撑台,将轴套滑 过填料函孔,使其固定到支撑台。
- 2. 将填料环安装到轴套上,并向下进入孔,使其 末端相抵,不在填料和填料函之间留出间隙。 将填料注入填料函底部。将每个填料环的接头 交错至少90°。

注意:对于可冲洗的填料函,用套环替换从底部数起的第三个填料环,每侧只需五个填料环(见图 30)。填料经过压缩时,套环与密封进水口必须校直。对于不可冲洗(堵塞)的填料函,每侧均有第六个填料环,它取代了套环的位置。

- 3. 只为轮轴上将要置于轴套下方的部位,涂抹防 卡死化合物。
- 4. 将填料函衬垫安装到填料函。为使衬垫就位, 可能要用到润滑脂。
- 5. 将轴套/填料函组装体滑到轮轴,直到轴套落至 其定位轴肩。
- 6. 安装四个填料函帽螺钉。
- 7. 将固定螺钉安装到轴套, 拧紧到 50 inch-lbs。

注意:可能在水泵运行一段时间后,各个填料函才需要安装最后一个环。

8. 将填料函盖、柱螺栓、垫圈和螺母方形与填料 函组装到一起,并箍紧(见图 46 所示的分解组 装)。

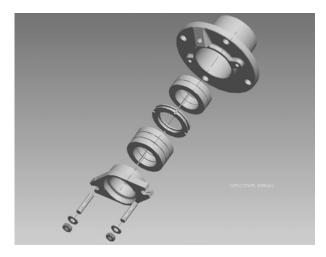


图 46: 带套环的填料函的分解图

9. 重复步骤 1 至 8,完成另一侧的安装。之后, 参见**安装轴承框架的组装程序一适用于所有水 泵**部分。

注意: 安装完轴承框架后, 拧松螺母, 使填料可以膨胀。再次箍紧到手指紧固水平。只有在水泵运行时, 才能对填料函盖螺母进行最后校正。校正的间隔约为 30 分钟。良好的校正应该使滴落速度大约在每秒一滴。

安装集装式密封件的组装程序

- 1. 只为轮轴上将要置于轴套下方的部位,涂抹防 卡死化合物。
- 2. 安装整个集装式密封件时,将衬垫安装到集装式密封件的密封盖(见图 47)。为使衬垫就位,可能要用到润滑脂。将整个组装体滑到轮轴,直到填料函盖完全置于盖板孔。安装和箍紧四个集装式密封件的帽螺钉。将轴套完全推到轴向堵塞,拧紧固定螺钉到 130 inch-lbs。

安装集装式密封盒时,使用 P-80 橡皮润滑乳 剂、肥皂水或等效物润滑静态表面 O 环。将密 封盒滑到轮轴上,确保将密封件表面正确地置 入空腔。使用帽螺钉,将密封盒轻轻地箍紧到 填料函盖。最后将转矩调整为 170 inch-lbs。 将轴套完全推到轴向堵塞, 拧紧固定螺钉到 130 inch-lbs.

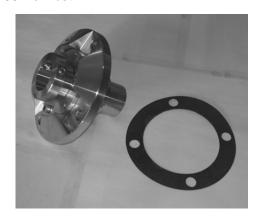


图 47: 集装式密封件和衬垫

3. 重复步骤 1 至 2, 安装另一侧的部件。完成 后,参见**安装轴承框架的组装程序一适用于所** 有水泵部分。

安装轴承框架的组装程序一适用于所有水泵

1. 将唇形密封件安装到轴承盖孔。唇形密封件应 抵住机械加工孔的底部。唇形部位应避开轴承 空腔。将轴承盖安装到轮轴上(见图 48)。

图 48: 轴承盖和唇形密封件

2. 只针对 2" (50.8mm) 框架的泵,将轴承备用环 安装到轮轴上(见图 49)。(图 22 是 2" (50.8mm) 框架泵的大小列表)。

图 49: 安装轴承备用环 (只针对 2" (50.8mm) 框架 的泵)

3. 使用电感应加热器对轴承进行加热。

▲ 注意: 谨防轴承损坏

加热轴承时,温度不要超过 130°C。超过此温度后 可能对轴承部件造成损坏。

否则,可能对设备造成损坏和/或对人员造成中度伤 害。

注意:极端高温危险

轴承表面温度很高。使用合适的防护装置,以防止 被烫伤。

否则,可能对设备造成损坏和/或对人员造成中度伤

4. 戴上手套,将加热后的轴承滑到轮轴上,抵住 轴肩。只针对 2" (50.8mm) 框架的水泵,将加 热后的轴承滑到轮轴上,抵住备用环。

注意: 轴承为单罩轴承, 轴承罩应向内面对泵轮。

5. 将锁紧垫圈和锁紧螺母安装到轮轴上。使用活 动扳手或锤子和冲压工具,进行箍紧。确保锁 紧螺母固定牢固,之后弯到锁紧垫圈片的上方 (见图 50)。

图 50: 安装锁紧垫圈和锁紧螺母

6. 只适用于内侧轴承支架:

将唇形密封件安装到轴承支架孔。唇形密封件 应抵住机械加工孔的底部。唇形部位应避开轴 承空腔(见图 **51**)。

图 51: 轴承支架和唇形密封件

- 7. 给轴承支架孔涂抹润滑脂,将其滑到轴承上方位置。安装四个帽螺钉,将支架固定到盖板。
- 8. 使用四个帽螺钉,将轴承盖固紧到轴承支架上。
- 9. 使用支架底部的润滑脂配件,填充轴承空腔, 直到润滑脂从唇形密封件溢出。

注意: 只可使用 Exxon Polyrex EM 润滑脂。

10. 重复步骤 1 至 9, 组装另一个轴承支架。

注意: 只有内侧轴承支架有唇形密封件。

一般组装说明

- 1. 安装冲洗工具,必要时,重新安装排水塞,并 关闭排水阀。
- 2. 安装和校直连轴器,请遵守**连轴器校直**部分的 说明。
- 3. 安装连轴器保护装置和支架保护装置(参见**保 护装置**部分。)。
- 4. 打开隔离阀,检查泵是否有泄漏。如果没有,则使水泵继续运行(见**运行**部分)。

改变旋转方向

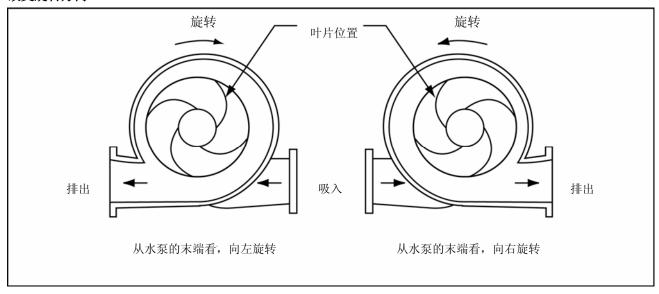


图 52: 泵轮至涡壳的位置

▲ 警告: 谨防意外启动

进行维护操作之前,必须拔掉或关闭电源。

否则会造成严重的人员伤亡,或财产损失。

▲ 警告: 谨防电击

电气连接须由专业电工完成, 必须遵守所有的适用 规则和条款,操作无误。

否则会造成严重的人员伤亡,或财产损失。

▲ 警告: 谨防旋转部件

运行泵之前,必须配备所有保护装置。

否则会造成严重的人员伤亡,或财产损失。

- 1. 将水泵从底座移除。
- 2. 遵守适用于水泵的拆卸程序。

注意: 改变旋转方向时,只需要移除一个盖板。

- 3. 将(压配安装的)泵轮用力压出轮轴。观察叶 片尖端指示的方向。将泵轮旋转 180°,将其重 新压配安装到轮轴。将参考安装盖板和轮轴组 **装体的组装程序**部分。此时,叶片尖端应指示 相反的方向(见图 52)。
- 4. 根据安装盖板和轮轴组装体的组装程序部分的 说明,重新安装旋转组装体。根据图 52,检查 泵轮至涡壳的关系。
- 5. 遵守适用于水泵的程序,完成再次组装。

注意: 如未改变电机转子的旋转方向, 叶轮会反 转。使泵继续运行前,检查电机,确保旋转方向正 确。

更换标准机械密封件

请参考以下部分:

- A. 一般拆卸说明
- B. 移除轴承框架的拆卸程序一适用于所有水泵
- C. 移除标准密封件的拆卸程序
- D. 安装标准密封件的组装程序
- E. 安装轴承框架的组装程序一适用于所有水泵
- F. 一般组装说明

更换集装式密封件

请参考以下部分:

- A. 一般拆卸说明
- B. 移除轴承框架的拆卸程序一适用于所有水泵
- C. 移除集装式密封件的拆卸程序
- D. 安装集装式密封件的组装程序
- E. 安装轴承框架的组装程序一适用于所有水泵
- F. 一般组装说明

更换填料或轴套

请参考以下部分:

- A. 一般拆卸说明
- B. 移除填料函和填料的拆卸程序
- C. 安装填料函和填料的组装程序
- D. 安装轴承框架的组装程序一适用于所有水泵
- E. 一般组装说明

定购部件

本手册涉及的泵的某些易损件可加以更换。建议的 备用件储量取决于安装情况和持续运行的重要程 度。

一般情况下,进行现场修护时,建议储存以下部件。

1 套轴承

- 1 套耐磨环(如需要)
- 1 套外壳衬垫、方形环和唇形密封件
- 两个机械密封件(完整件)

应尽早定购部件,因为公司不可控因素可能导致存 货减少。并非所有部件均有存货,有些部件必须根 据定单进行生产。

为加快处理备用件定单的速度,请确保定单包含以下信息:

- 1. 水泵的系列号(见泵的铭牌)。
- 2. 部件名称。
- 3. 每个部件的数量
- 4. 所需材料。(如若变更材料说明,将采用原初 材料提供部件。如有任何变更材料要求,请与 厂商协商。)

代理服务

如果有问题无法解决,请联系 Bell & Gossett 公司的当地代表处。为获取代表处的帮助,请提供以下信息:

- 1. 泵和电机的铭牌上的所有数据。
- 2. 吸入和排出管道的压力计的读数。
- 3. 电机的电流安培数。
- 4. 水泵连结结构和管道的草图。

表 6: 帽螺钉转矩

		帽螺钉转矩(尺磅)								
帽螺钉类型	螺钉帽标志	帽螺钉直径								
		1/4	5/16	3/8	7/16	1/2	5/8	3/4	7/8	1
SAE 级别 2	\bigcirc	6	13	25	38	60	120	190	210	300
黄铜 不锈钢	$\bigcirc_{\vec{q}}\bigcirc$	4	10	17	27	42	83	130	200	300
SAE 级别 5	\Leftrightarrow	10	20	35	60	90	180	325	525	800
SAE 级别 8	\Longleftrightarrow	13	28	46	75	115	225	370	590	895

© COPYRIGHT 2006 BY

PRINTED IN U.S.A. 1-06

Bell & Gossett

8200 N. Austin Avenue Morton Grove, IL 60053 电话: (847) 966-3700 http://www.bellgossett.com